Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.127
Filtrar
1.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164164

RESUMO

Interleukin-1 beta (IL-1ß) has diverse physiological functions and plays important roles in health and disease. In this report, we focus on its function in the production of pro-inflammatory cytokines, including IL-6 and IL-8, which are implicated in several autoimmune diseases and host defense against infection. IL-1ß activity is markedly dependent on the binding affinity toward IL-1 receptors (IL-1Rs). Several studies have been conducted to identify suitable small molecules that can modulate the interactions between 1L-1ß and 1L-1R1. Based on our previous report, where DPIE [2-(1,2-Diphenyl-1H-indol-3-yl)ethanamine] exhibited such modulatory activity, three types of DPIE derivatives were synthesized by introducing various substituents at the 1, 2, and 3 positions of the indole group in DPIE. To predict a possible binding pose in complex with IL-1R1, a docking simulation was performed. The effect of the chemicals was determined in human gingival fibroblasts (GFs) following IL-1ß induction. The DPIE derivatives affected different aspects of cytokine production. Further, a group of the derivatives enabled synergistic pro-inflammatory cytokine production, while another group caused diminished cytokine production compared to DPIE stimulation. Some groups displayed no significant difference after stimulation. These findings indicate that the modification of the indole site could modulate IL-1ß:IL1R1 binding affinity to reduce or enhance pro-inflammatory cytokine production.


Assuntos
Citocinas/agonistas , Citocinas/antagonistas & inibidores , Indóis/farmacologia , Mediadores da Inflamação/agonistas , Mediadores da Inflamação/antagonistas & inibidores , Fenetilaminas/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Indóis/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/agonistas , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Fenetilaminas/química
2.
J Neuroinflammation ; 19(1): 2, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983568

RESUMO

BACKGROUND: Anxiety disorders are the most prevalent mental illnesses in the U.S. and are estimated to consume one-third of the country's mental health treatment cost. Although anxiolytic therapies are available, many patients still exhibit treatment resistance, relapse, or substantial side effects. Further, due to the COVID-19 pandemic and stay-at-home order, social isolation, fear of the pandemic, and unprecedented times, the incidence of anxiety has dramatically increased. Previously, we have demonstrated dihydromyricetin (DHM), the major bioactive flavonoid extracted from Ampelopsis grossedentata, exhibits anxiolytic properties in a mouse model of social isolation-induced anxiety. Because GABAergic transmission modulates the immune system in addition to the inhibitory signal transmission, we investigated the effects of short-term social isolation on the neuroimmune system. METHODS: Eight-week-old male C57BL/6 mice were housed under absolute social isolation for 4 weeks. The anxiety-like behaviors after DHM treatment were examined using elevated plus-maze and open field behavioral tests. Gephyrin protein expression, microglial profile changes, NF-κB pathway activation, cytokine level, and serum corticosterone were measured. RESULTS: Socially isolated mice showed increased anxiety levels, reduced exploratory behaviors, and reduced gephyrin levels. Also, a dynamic alteration in hippocampal microglia were detected illustrated as a decline in microglia number and overactivation as determined by significant morphological changes including decreases in lacunarity, perimeter, and cell size and increase in cell density. Moreover, social isolation induced an increase in serum corticosterone level and activation in NF-κB pathway. Notably, DHM treatment counteracted these changes. CONCLUSION: The results suggest that social isolation contributes to neuroinflammation, while DHM has the ability to improve neuroinflammation induced by anxiety.


Assuntos
Flavonóis/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Isolamento Social/psicologia , Animais , Ansiedade/metabolismo , Ansiedade/prevenção & controle , Ansiedade/psicologia , Flavonóis/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
3.
Biochem Pharmacol ; 197: 114890, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990595

RESUMO

Biocompatible and biodegradable biomaterials are used extensively in regenerative medicine and serve as a tool for tissue replacement, as a platform for regeneration of injured tissue, and as a vehicle for delivery of drugs. One of the key factors that must be addressed in developing successful biomaterial-based therapeutics is inflammation. Whilst inflammation is initially essential for wound healing; bringing about clearance of debris and infection, prolonged inflammation can result in delayed wound healing, rejection of the biomaterial, further tissue damage and increased scarring and fibrosis. In this context, the choice of biomaterial must be considered carefully to minimise further induction of inflammation. Here we address the ability of the biomaterials themselves to modulate inflammatory responses and outline how the physico-chemical properties of the materials impact on their pro and anti-inflammatory properties (Fig. 1).


Assuntos
Anti-Inflamatórios/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Fatores Imunológicos/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Materiais Biocompatíveis/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Inflamação , Mediadores da Inflamação/imunologia , Cicatrização/fisiologia
4.
Eur J Pharmacol ; 918: 174715, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35026193

RESUMO

Evidence has demonstrated that a new class of anti-diabetic drugs, sodium-glucose co-transporter 2 (SGLT2) inhibitors, could exert beneficial effects on atherosclerotic complications of diabetes. Atherosclerosis is widely accepted as an inflammatory disease. Therefore, we aimed to assess the direct anti-inflammatory effects of SGLT2 inhibitors dapagliflozin (DAPA) on two cell types involved in the process of atherogenesis. Human umbilical vein endothelial cells (HUVECs) and macrophages were exposed to DAPA and lipopolysaccharide (LPS 20 ng/mL) for 24 h under normal (5.5 mmol/L, NG) or high glucose (25 mmol/L, HG) conditions. Then, levels of TLR-4/p-NF-κB, inflammatory cytokines, inflammation-related miR-146a and miR-155 as well as alteration in the ratio of M1/M2 macrophage polarization was assessed. DAPA (0.5 µM) could significantly attenuate LPS-induced TLR-4 overexpression (23.9% and 33.1% under NG and HG conditions in HUVECs and 53.3% and 52.4% under NG and HG states in macrophages, respectively). NF-κB p65 phosphorylation was also significantly decreased to 30.1% under NG condition in HUVECs and 51.9% and 34.5% under NG and HG states in macrophages by 0.5 µM DAPA. Moreover, DAPA elevated expression levels of anti-inflammatory miR-146a, while values of miR-155 decreased in those cells. DAPA also caused a shift from inflammatory M1 macrophages toward M2-dominant macrophages. These data suggest that regardless of glucose concentrations, DAPA could exert direct anti-inflammatory effects, at least partly, by inhibiting the expression of TLR-4 and activation of NF-κB along with the secretion of pro-inflammatory mediators.


Assuntos
Aterosclerose , Compostos Benzidrílicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Macrófagos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Anti-Inflamatórios/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Aterosclerose/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Hipoglicemiantes/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Transdução de Sinais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
5.
Biochem Pharmacol ; 197: 114918, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063441

RESUMO

Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease characterized by multifocal perivascular infiltration of immune cells in the central nervous system (CNS). Cordycepin (3'-deoxyadenosine), an adenosine analogue initially extracted from the fungus Cordyceps militarisa, is one of the candidates that has multiple actions. We investigated that cordycepin attenuated the activation of LPS-induced mouse bone marrow-derived dendritic cells (BMDCs) and human monocyte-derived dendritic cells (MoDCs) through the inhibition of the AKT, ERK, NFκB, and ROS pathways and impaired the migration of BMDCs through the downregulation of adhesion molecules and chemokine receptors in vitro. In experimental autoimmune encephalomyelitis (EAE) model, preventive treatment with cordycepin decreased the expression of trafficking factors in the CNS, inhibited the secretion of inflammatory cytokines (IFN-γ, IL-6, TNF-α, and IL-17), and attenuated disease symptoms. A chemokine array indicated that cordycepin treatment reversed the high levels of CCL6, PARRES2, IL-16, CXCL10, and CCL12 in the brain and spinal cord of EAE mice, consistent with the RNA-seq data. Moreover, cordycepin suppressed the release of neuroinflammatory cytokines by activated microglial cells, macrophages, Th17 cells, Tc1 cells, and Th1 cells in vitro. Furthermore, cordycepin treatment exerted therapeutic effects on attenuating the disease severity in the early disease onset stage and late disease progression stage. Our study suggests that cordycepin treatment may not only prevent the occurrence of MS by inhibiting DC activation and migration but also potentially ameliorates the progression of MS by reducing neuroinflammation, which may provide insights into the development of new approaches for the treatment of MS.


Assuntos
Desoxiadenosinas/uso terapêutico , Encefalomielite Autoimune Experimental/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Leucócitos/efeitos dos fármacos , Animais , Linhagem Celular Transformada , Células Cultivadas , Desoxiadenosinas/farmacologia , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/prevenção & controle , Células RAW 264.7 , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo
6.
Biochem Pharmacol ; 197: 114917, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35041813

RESUMO

Noninfectious (autoimmune and immune-mediated) uveitis is one of the primary diseases leading to blindness in the world. Due to the limitation of current first-line drugs for clinical uveitis, novel drugs and targets against uveitis are urgently needed. Ganciclovir (GCV), an FDA-approved antiviral drug, is often used to treat cytomegalovirus-induced retinitis in clinical patients. Recently, GCV was found to suppress neuroinflammation via targeting STING signaling because the STING pathway plays a pivotal role in autoimmune diseases. However, until now, the effect of GCV on non-infectious uveitis has never been explored. In this work, using the rat experimental autoimmune uveitis (EAU) model, we first found STING to be highly expressed in infiltrating cells (CD68+, CD45+, and CD4+) and retinal glial cells (Iba1+ and GFAP+) of the immunized retina. More importantly, GCV treatment can significantly suppress the initiation and progression of EAU by inhibiting infiltration of Th17 and inflammatory cells into the retina. Mechanistically, we found that GCV could reverse the levels of pro-inflammatory factors (such as IL-1ß) and chemokine-related factors (such as Cxcr3), possibly via targeting the STING pathway. The present results suggest that GCV may be considered as a novel therapeutic strategy against human uveitis.


Assuntos
Doenças Autoimunes/prevenção & controle , Ganciclovir/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Retina/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Uveíte/prevenção & controle , Animais , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Progressão da Doença , Relação Dose-Resposta a Droga , Proteínas do Olho/toxicidade , Ganciclovir/farmacologia , Humanos , Mediadores da Inflamação/imunologia , Masculino , Ratos , Ratos Endogâmicos Lew , Retina/imunologia , Retina/patologia , Proteínas de Ligação ao Retinol/toxicidade , Células Th17/imunologia , Células Th17/patologia , Uveíte/induzido quimicamente , Uveíte/imunologia , Uveíte/patologia
7.
Biochem Pharmacol ; 197: 114912, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032460

RESUMO

The roots of Glycine tabacina are used to treat rheumatoid arthritis (RA) and joint infection in folk medicine. Glytabastan B (GlyB), a newly reported coumestan isolated from this species, was found to significantly attenuate IL-1ß-induced inflammation in SW982 human synovial cells at 3 and 6 µM, as evidenced by the decreased levels of pro-inflammatory mediators and matrix metalloproteinases (MMPs). GlyB also suppressed RANKL-induced osteoclastogenesis, decreased the expression of osteoclastogenic markers (NFATc1, CTSK, MMP-9) and osteoclast-mediated bone resorption. Further, GlyB administration (12.5 and 25 mg/kg) significantly inhibited inflammation, osteoclast formation and disease progression in collagen-induced arthritis (CIA) mice. Integration of network pharmacology, quantitative phosphoproteomic and experimental pharmacology results revealed that these beneficial actions were closely associated with the blockade of GlyB on the activation of MAPK, PI3K/AKT and their downstream signals including NF-κB and GSK3ß/NFATc1. Drug affinity responsive target stability (DARTS) assay, cellular thermal shift (CETSA) assay and molecular docking analysis confirmed that there were direct interactions between GlyB and its target proteins ERK2, JNK1 and class Ⅰ PI3K catalytic subunit p110 (α, ß, δ and γ), which significantly contributed to the inhibition of activation of MAPK and PI3K/AKT pathways. In conclusion, these results strongly suggest GlyB is a promising multiple-target candidate for the development of agents for the prevention and treatment of RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Cumarínicos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Sinoviócitos/efeitos dos fármacos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Células Cultivadas , Cumarínicos/isolamento & purificação , Cumarínicos/farmacologia , Relação Dose-Resposta a Droga , Fabaceae , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Sinoviócitos/metabolismo , Sinoviócitos/patologia
8.
Exp Neurol ; 348: 113924, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774860

RESUMO

Traumatic brain injury (TBI) impacts millions worldwide and can cause lasting psychiatric symptoms. Chronic neuroinflammation is a characteristic of post-injury pathology and is also associated with psychiatric conditions such as ADHD and bipolar disorder. Therefore, the current study sought to determine whether TBI-induced impulsivity and inattention could be treated using minocycline, an antibiotic with anti-inflammatory properties. Rats were trained on the five-choice serial reaction time task (5CSRT), a measure of motor impulsivity and attention. After behavior was stable on the 5CSRT, rats received either a bilateral frontal TBI or sham procedure. Minocycline was given at either an early (1 h post-injury) or chronic (9 weeks post-injury) timepoint. Minocycline was delivered every 12 h for 5 days (45 mg/kg, i.p.). Behavioral testing on the 5CSRT began again after one week of recovery and continued for 12 more weeks, then rats were transcardially perfused. Impulsivity and inattention were both substantially increased following TBI. Minocycline had no therapeutic effects at either the early or late time points. TBI rats had increased lesion volume, but minocycline did not attenuate lesion size. Additionally, microglia count measured by IBA-1+ cells was only increased acutely after TBI, and minocycline did not differentially change the number of microglia in TBI rats. Despite this, minocycline had clear effects on the gut microbiome. Based on the results of this study, minocycline may have limited efficacy for post-injury psychiatric-like symptoms.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Comportamento Impulsivo/efeitos dos fármacos , Minociclina/uso terapêutico , Tempo de Reação/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/psicologia , Comportamento Impulsivo/fisiologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Minociclina/farmacologia , Ratos , Ratos Long-Evans , Tempo de Reação/fisiologia , Falha de Tratamento
9.
Arch Dermatol Res ; 314(1): 1-15, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33559733

RESUMO

We present the first reported cases of delayed inflammatory reactions (DIR) to hyaluronic acid (HA) dermal fillers after exposure to the COVID-19 spike protein. DIR to HA is reported to occur in the different scenarios including: secondary to poor injection technique, following dental cleaning procedures, following bacterial/viral illness, and after vaccination. In this report of 4 cases with distinct clinical histories and presentations: one case occured following a community acquired COVID-19 infection, one case occured in a study subject in the mRNA-1273 clinical phase III trial, one case occurred following the first dose of publically available mRNA-1273 vaccine (Moderna, Cambridge MA), and the last case occurred after the second dose of BNT162b2 vaccine (Pfizer, New York, NY). Injectable HA dermal fillers are prevalent in aesthetic medicine for facial rejuvenation. Structural modifications in the crosslinking of HA fillers have enhanced the products' resistance to enzymatic breakdown and thus increased injected product longevity, however, have also led to a rise in DIR. Previous, DIR to HA dermal fillers can present clinically as edema with symptomatic and inflammatory erythematous papules and nodules. The mechanism of action for the delayed reaction to HA fillers is unknown and is likely to be multifactorial in nature. A potential mechanism of DIR to HA fillers in COVID-19 related cases is binding and blockade of angiotensin 2 converting enzyme receptors (ACE2), which are targeted by the SARS-CoV-2 virus spike protein to gain entry into the cell. Spike protein interaction with dermal ACE2 receptors favors a pro-inflammatory, loco-regional TH1 cascade, promoting a CD8+T cell mediated reaction to incipient granulomas, which previously formed around residual HA particles. Management to suppress the inflammatory response in the native COVID-19 case required high-dose corticosteroids (CS) to suppress inflammatory pathways, with concurrent ACE2 upregulation, along with high-dose intralesional hyaluronidase to dissolve the inciting HA filler. With regards to the two vaccine related cases; in the mRNA-1273 case, a low dose angiotensin converting enzyme inhibitor (ACE-I) was utilized for treatment, to reduce pro-inflammatory Angiotensin II. Whereas, in the BNT162b2 case the filler reaction was suppressed with oral corticosteroids. Regarding final disposition of the cases; the vaccine-related cases returned to baseline appearance within 3 days, whereas the native COVID-19 case continued to have migratory, evanescent, periorbital edema for weeks which ultimately subsided.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/efeitos adversos , Vacina BNT162/efeitos adversos , COVID-19/virologia , Preenchedores Dérmicos/efeitos adversos , Ácido Hialurônico/efeitos adversos , Mediadores da Inflamação/imunologia , Inflamação/etiologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Adulto , Anti-Inflamatórios/uso terapêutico , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Diagnóstico Diferencial , Feminino , Interações Hospedeiro-Patógeno , Humanos , Ácido Hialurônico/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/virologia , Mediadores da Inflamação/antagonistas & inibidores , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco , SARS-CoV-2/imunologia , Resultado do Tratamento , Vacinação/efeitos adversos
10.
J Ethnopharmacol ; 282: 114576, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461191

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Pineapple (Ananas comosus) peel is a major waste in pineapple canning industry and it is reported to be used in ethnomedicine as a component of herbal remedies for malarial management. This study aimed to evaluate the antimalarial, antinociceptive and anti-inflammatory properties of Ananas comosus peel extract (PEAC). METHODS: Ananas comosus peel was extracted with 80% methanol. PEAC (100, 200 and 400 mg/kg) was investigated for antimalarial effect using Peter's 4-day suppressive test (4-DST) model in mice. Antinociceptive activity of PEAC was investigated in hot plate, acetic acid-induced writhing and formalin tests in mice. The anti-inflammatory activity was evaluated using the lipopolysaccharides-induced sickness behavior in mice and carrageenan-induced air pouch in rats' models. RESULTS: PEAC could not significantly (p > 0.05) suppressed parasitemia level at 7-day post-infection in 4-DST. PEAC (400 mg/kg) mildly prolongs survival of infected mice up till day 21. PEAC demonstrated significant (p < 0.05) antinociceptive activity by increasing latency to jump on the hot plate, reduced number of writhings in acetic acid test and reduced paw licking time in 2nd phase of formalin test. PEAC significantly reduced anxiogenic and depressive-like symptoms of sickness behavior in LPS-injected mice. PEAC demonstrated significant anti-inflammatory activity in carrageenan-induced air pouch experiment by reducing exudates formation, inflammatory cell counts, and nitrite, tumor necrosis factor-alpha and interleukin-6 levels. CONCLUSION: Ananas comosus peel extract demonstrated mild antimalarial activity but significant anti-nociceptive and anti-inflammatory properties probably mediated via inhibition of pro-inflammatory mediators.


Assuntos
Analgésicos/farmacologia , Ananas , Anti-Inflamatórios/farmacologia , Antimaláricos/farmacologia , Inflamação , Animais , Modelos Animais de Doenças , Monitoramento de Medicamentos/métodos , Frutas , Inflamação/sangue , Inflamação/tratamento farmacológico , Mediadores da Inflamação/antagonistas & inibidores , Interleucina-6/análise , Camundongos , Extratos Vegetais/farmacologia , Ratos , Fator de Necrose Tumoral alfa/análise
11.
J Neuroinflammation ; 18(1): 289, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895246

RESUMO

BACKGROUND: Current therapies targeting several neurotransmitter systems are only able to partially mitigate the symptoms of stress- and trauma-related disorder. Stress and trauma-related disorders lead to a prominent inflammatory response in humans, and in pre-clinical models. However, mechanisms underlying the induction of neuroinflammatory response in PTSD and anxiety disorders are not clearly understood. The present study investigated the mechanism underlying the activation of proinflammatory NLRP3 inflammasome and IL1ß in mouse models of stress. METHODS: We used two mouse models of stress, i.e., mice subjected to physical restraint stress with brief underwater submersion, and predator odor stress. Mice were injected with MCC950, a small molecule specific inhibitor of NLRP3 activation. To pharmacologically inhibit BTK, a specific inhibitor ibrutinib was used. To validate the observation from ibrutinib studies, a separate group of mice was injected with another BTK-specific inhibitor LFM-A13. Seven days after the induction of stress, mice were examined for anxious behavior using open field test (OFT), light-dark test (LDT), and elevated plus maze test (EPM). Following the behavior tests, hippocampus and amygdale were extracted and analyzed for various components of NLRP3-caspase 1-IL1ß pathway. Plasma and peripheral blood mononuclear cells were also used to assess the induction of NLRP3-Caspase 1-IL-1ß pathway in stressed mice. RESULTS: Using two different pre-clinical models of stress, we demonstrate heightened anxious behavior in female mice as compared to their male counterparts. Stressed animals exhibited upregulation of proinflammatory IL1ß, IL-6, Caspase 1 activity and NLRP3 inflammasome activation in brain, which were significantly higher in female mice. Pharmacological inhibition of NLRP3 inflammasome activation led to anxiolysis as well as attenuated neuroinflammatory response. Further, we observed induction of activated Bruton's tyrosine kinase (BTK), an upstream positive-regulator of NLRP3 inflammasome activation, in hippocampus and amygdala of stressed mice. Next, we conducted proof-of-concept pharmacological BTK inhibitor studies with ibrutinib and LFM-A13. In both sets of experiments, we found BTK inhibition led to anxiolysis and attenuated neuroinflammation, as indicated by significant reduction of NLRP3 inflammasome and proinflammatory IL-1ß in hippocampus and amygdala. Analysis of plasma and peripheral blood mononuclear cells indicated peripheral induction of NLRP3-caspase 1-IL1ß pathway in stressed mice. CONCLUSION: Our study identified BTK as a key upstream regulator of neuroinflammation, which drives anxiogenic behavior in mouse model of stress. Further, we demonstrated the sexually divergent activation of BTK, providing a clue to heightened neuroinflammation and anxiogenic response to stress in females as compared to their male counterparts. Our data from the pharmacological inhibition studies suggest BTK as a novel target for the development of potential clinical treatment of PTSD and anxiety disorders. Induction of pBTK and NLRP3 in peripheral blood mononuclear cells of stressed mice suggest the potential effect of stress on systemic inflammation.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Ansiedade/enzimologia , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Estresse Psicológico/enzimologia , Adenina/análogos & derivados , Adenina/farmacologia , Adenina/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Amidas/farmacologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Feminino , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nitrilas/farmacologia , Odorantes , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Ratos , Restrição Física/efeitos adversos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologia
12.
Anal Cell Pathol (Amst) ; 2021: 1840069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873567

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and affects about 8% of cirrhotic patients, with a recurrence rate of over 50%. There are numerous therapies available for the treatment of HCC, depending on cancer staging and condition of the patient. The complexity of the treatment is also justified by the unique pathogenesis of HCC that involves intricate processes such as chronic inflammation, fibrosis, and multiple molecular carcinogenesis events. During the last three decades, multiple in vivo and in vitro experiments have used somatostatin and its analogs (SSAs) to reduce the proliferative and metastatic potential of hepatoma cells by inducing their apoptosis and reducing angiogenesis and the inflammatory component of HCC. Most experiments have proven successful, revealing several different pathways and mechanisms corresponding to the aforementioned functions. Moreover, a correlation between specific effects and expression of somatostatin receptors (SSTRs) was observed in the studied cells. Clinical trials have tested either somatostatin or an analog, alone or in combination with other drugs, to explore the potential effects on HCC patients, in various stages of the disease. While the majority of these clinical trials exhibited minor to moderate success, some other studies were inconclusive or even reported negative outcomes. A complete evaluation of the efficacy of somatostatin and SSAs is still the matter of intense debate, and, if deemed useful, these substances may play a beneficial role in the management of HCC patients.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Somatostatina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Receptores de Somatostatina/metabolismo , Somatostatina/análogos & derivados
13.
Front Immunol ; 12: 779076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899738

RESUMO

Graft versus host disease (GVHD) is the major non-relapse complication associated with allogeneic hematopoietic stem cell transplantation (HSCT). Unfortunately, GVHD occurs in roughly half of patients following this therapy and can induce severe life-threatening side effects and premature mortality. The pathophysiology of GVHD is driven by alloreactive donor T cells that induce a proinflammatory environment to cause pathological damage in the skin, gastrointestinal (GI) tract, lung, and liver during the acute phase of this disease. Recent work has demonstrated that the GI tract is a pivotal target organ and a primary driver of morbidity and mortality in patients. Prevention of this complication has therefore emerged as an important goal of prophylaxis strategies given the primacy of this tissue site in GVHD pathophysiology. In this review, we summarize foundational pre-clinical studies that have been conducted in animal models to prevent GI tract GVHD and examine the efficacy of these approaches upon subsequent translation into the clinic. Specifically, we focus on therapies designed to block inflammatory cytokine pathways, inhibit cellular trafficking of alloreactive donor T cells to the GI tract, and reconstitute impaired regulatory networks for the prevention of GVHD in the GI tract.


Assuntos
Gastroenteropatias/prevenção & controle , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunoterapia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Anti-Inflamatórios/farmacologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Modelos Animais de Doenças , Gastroenteropatias/imunologia , Gastroenteropatias/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Humanos , Imunossupressores/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Terapia de Alvo Molecular , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/transplante , Pesquisa Translacional Biomédica , Transplante Homólogo/efeitos adversos
14.
Life Sci ; 287: 120121, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742745

RESUMO

AIM: Nephrotoxicity is a critical consequence of cadmium toxicity. Cadmium induces nephrotoxicity through disruption of cellular redox balance and induction of endoplasmic reticulum stress (ERS) and inflammatory responses. The present study investigated the renoprotective effects of the naturally occurring arctigenin against the cadmium-induced nephrotoxicity. MAIN METHODS: Male Wistar rats were randomized into normal control, arctigenin control, cadmium, and cadmium/arctigenin groups. Cadmium and arctigenin were administered daily over a seven-day period. On the eighth day, blood and kidney tissue specimens were collected and subjected to spectrophotometric, ELISA, and immunoblotting analysis. KEY FINDINGS: Arctigenin significantly improved renal functions and reduced renal tubular injury in the cadmium-intoxicated rats as reflected by increased GFR and reduced levels of serum creatinine, BUN, urinary albumin-to-creatinine ratio, and protein expression of KIM-1. Arctigenin alleviated the cadmium-induced oxidative DNA damage and lipid peroxidation while boosted reduced glutathione level and antioxidant enzymes activity. Mechanistically, arctigenin enhanced nuclear translocation of the antioxidant transcription factor Nrf2 and up-regulated its downstream redox-regulating enzymes HO-1 and NQO1. Importantly, arctigenin ameliorated the cadmium-evoked ERS as demonstrated by reduced protein expression of the key molecules Bip, PERK, IRE1α, CHOP, phspho-eIF2α, and caspase-12 and diminished activity of caspase-12. Additionally, arctigenin down-regulated the cadmium-induced NF-κB nuclear translocation and decreased its downstream pro-inflammatory cytokines TNF-α and IL-1ß. SIGNIFICANCE: The current work underlines the alleviating activity of arctigenin against cadmium-evoked nephrotoxicity potentially through mitigating ERS and targeting Nrf2 and NF-κB signaling. The current findings support possible therapeutic application of arctigenin in controlling cadmium-induced nephrotoxicity although clinical investigations are necessary.


Assuntos
Cádmio/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Furanos/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Nefropatias/tratamento farmacológico , Lignanas/uso terapêutico , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Animais , Estresse do Retículo Endoplasmático/fisiologia , Furanos/farmacologia , Mediadores da Inflamação/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Lignanas/farmacologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Wistar
15.
Life Sci ; 287: 120123, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748761

RESUMO

Idiopathic pulmonary fibrosis is a chronic, progressive parenchymal lung disease that results in fibrogenesis and the conditioned medium from adipose-derived mesenchymal stem cells (CM-ADSCs) has been shown to be efficacious in pulmonary fibrosis animal models. The aim of the present study is to evaluate the effect of CM-ADSCs on lung inflammation and fibrosis in a Bleomycin (BLM)-induced pulmonary fibrosis model. CM-ADSCs safety and toxicity were evaluated in Sprague Dawley rats and no adverse effects were observed. Six-week-old female C57BL/6J mice were employed in the BLM-induced pulmonary fibrosis model and were divided into four groups: Group 1 (Sham): animals were kept without BLM and treatment, Group 2 (Control): BLM with vehicle DMEM, Group 3: 10 µg/kg CM-ADSCs and Group 4: 100 µg/kg CM-ADSCs. Body weight, fibrosis and inflammation histological analyses, mRNA and protein pro-inflammatory cytokine, and total hydroxyproline content calculation were performed in all groups upon sacrifice. The 100 µg/kg CM-ADSCs showed a significant increase in mean body weight compared to Controls. CM-ADSCs doses resulted in the amelioration of fibrosis, as seen by Masson's Trichrome-staining, Ashcroft scoring, and Sirius red-staining. Compared to Controls, inflammation was also significantly reduced in CM-ADSCs-treated mice, with reduced F4/80 macrophage antigen staining, TNF-α mRNA and IL-6 and IL-10 protein levels. Total hydroxyproline content was found significantly reduced in both groups of CM-ADSCs-treated mice. Overall, our study shows that the CM-ADSCs is safe and efficient against pulmonary fibrosis, as it significantly reduced inflammation and fibrosis, with the larger dose of 100 µg/kg CM-ADSCs being the most efficient one.


Assuntos
Meios de Cultivo Condicionados , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática/terapia , Mediadores da Inflamação/antagonistas & inibidores , Células-Tronco Mesenquimais , Pneumonia/terapia , Adulto , Animais , Linhagem Celular Transformada , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Mediadores da Inflamação/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Pneumonia/patologia , Ratos , Ratos Sprague-Dawley
16.
Life Sci ; 287: 120120, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34762903

RESUMO

Cancer is a heterogeneous disease with high morbidity and mortality rate involving changes in redox balance and deregulation of redox signalling. For decades, studies have involved developing an effective cancer treatment to combat treatment resistance. As natural products such as thymoquinone have numerous health benefits, studies are also focusing on using them as a viable method for cancer treatment, as they have minimal toxic effects compared with standard cancer treatments. Thymoquinone studies have shown numerous mechanisms of action, such as regulation of reactive species interfering with DNA structure, modulating various potential targets and their signalling pathways as well as immunomodulatory effects in vitro and in vivo. Thymoquinone's anti-cancer effect is mainly due to the induction of apoptotic mechanisms, such as activation of caspases, downregulation of precancerous genes, inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), anti-tumour cell proliferation, ROS regulation, hypoxia and anti-metastasis. Insight into thymoquinone's potential as an alternative treatment for chemoprevention and inflammation can be accomplished via compiling these studies, to provide a better understanding on how and why it works, as well as its interactions with common chemotherapeutic treatments.


Assuntos
Antineoplásicos/uso terapêutico , Benzoquinonas/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto/métodos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
Life Sci ; 287: 120114, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34732329

RESUMO

Recent studies show a connection between glycolysis and inflammatory response in rheumatoid arthritis (RA) macrophages (MΦs) and fibroblasts (FLS). Yet, it is unclear which pathways could be targeted to rebalance RA MΦs and FLS metabolic reprogramming. To identify novel targets that could normalize RA metabolic reprogramming, TLR7-mediated immunometabolism was characterized in RA MΦs, FLS and experimental arthritis. We uncovered that GLUT1, HIF1α, cMYC, LDHA and lactate were responsible for the TLR7-potentiated metabolic rewiring in RA MΦs and FLS, which was negated by IRAK4i. While in RA FLS, HK2 was uniquely expanded by TLR7 and negated by IRAK4i. Conversely, TLR7-driven hypermetabolism, non-oxidative PPP (CARKL) and oxidative phosphorylation (PPARγ) were narrowly dysregulated in TLR7-activated RA MΦs and FLS and was reversed by IRAK4i. Consistently, IRAK4i therapy disrupted arthritis mediated by miR-Let7b/TLR7 along with impairing a broad-range of glycolytic intermediates, GLUT1, HIF1α, cMYC, HK2, PFKFB3, PKM2, PDK1 and RAPTOR. Notably, inhibition of the mutually upregulated glycolytic metabolites, HIF1α and cMYC, was capable of mitigating TLR7-induced inflammatory imprint in RA MΦs and FLS. In keeping with IRAK4i, treatment with HIF1i and cMYCi intercepted TLR7-enhanced IRF5 and IRF7 in RA MΦs, distinct from RA FLS. Interestingly, in RA MΦs and FLS, IRAK4i counteracted TLR7-induced CARKL reduction in line with HIF1i. Whereas, cMYCi in concordance with IRAK4i, overturned oxidative phosphorylation via PPARγ in TLR7-activated RA MΦs and FLS. The blockade of IRAK4 and its interconnected intermediates can rebalance the metabolic malfunction by obstructing glycolytic and inflammatory phenotypes in RA MΦs and FLS.


Assuntos
Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Mediadores da Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Macrófagos/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Artrite Reumatoide/tratamento farmacológico , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Humanos , Imiquimode/farmacologia , Imiquimode/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos DBA
18.
Front Immunol ; 12: 731701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630411

RESUMO

Aortic diseases are the primary public health concern. As asymptomatic diseases, abdominal aortic aneurysm (AAA) and atherosclerosis are associated with high morbidity and mortality. The inflammatory process constitutes an essential part of a pathogenic cascade of aortic diseases, including atherosclerosis and aortic aneurysms. Inflammation on various vascular beds, including endothelium, smooth muscle cell proliferation and migration, and inflammatory cell infiltration (monocytes, macrophages, neutrophils, etc.), play critical roles in the initiation and progression of aortic diseases. The tryptophan (Trp) metabolism or kynurenine pathway (KP) is the primary way of degrading Trp in most mammalian cells, disturbed by cytokines under various stress. KP generates several bioactive catabolites, such as kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), etc. Depends on the cell types, these metabolites can elicit both hyper- and anti-inflammatory effects. Accumulating evidence obtained from various animal disease models indicates that KP contributes to the inflammatory process during the development of vascular disease, notably atherosclerosis and aneurysm development. This review outlines current insights into how perturbed Trp metabolism instigates aortic inflammation and aortic disease phenotypes. We also briefly highlight how targeting Trp metabolic pathways should be considered for treating aortic diseases.


Assuntos
Aorta/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aortite/metabolismo , Aterosclerose/metabolismo , Mediadores da Inflamação/metabolismo , Triptofano/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Aorta/efeitos dos fármacos , Aorta/imunologia , Aorta/patologia , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/imunologia , Aneurisma da Aorta Abdominal/patologia , Aortite/tratamento farmacológico , Aortite/imunologia , Aortite/patologia , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Aterosclerose/patologia , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Cinurenina/metabolismo , Transdução de Sinais
20.
J Neuroinflammation ; 18(1): 249, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717678

RESUMO

BACKGROUND: Many neurological diseases involve neuroinflammation, during which overproduction of cytokines by immune cells, especially microglia, can aggregate neuronal death. Ferroptosis is a recently discovered cell metabolism-related form of cell death and RSL3 is a well-known inducer of cell ferroptosis. Here, we aimed to investigate the effects of RSL3 in neuroinflammation and sensitivity of different type of microglia and macrophage to ferroptosis. METHODS: Here, we used quantitative RT-PCR analysis and ELISA analysis to analyze the production of proinflammatory cytokine production of microglia and macrophages after lipopolysaccharides (LPS) stimulation. We used CCK8, LDH, and flow cytometry analysis to evaluate the sensitivity of different microglia and macrophages to RSL3-induced ferroptosis. Western blot was used to test the activation of inflammatory signaling pathway and knockdown efficiency. SiRNA-mediated interference was conducted to knockdown GPX4 or Nrf2 in BV2 microglia. Intraperitoneal injection of LPS was performed to evaluate systemic inflammation and neuroinflammation severity in in vivo conditions. RESULTS: We found that ferroptosis inducer RSL3 inhibited lipopolysaccharides (LPS)-induced inflammation of microglia and peritoneal macrophages (PMs) in a cell ferroptosis-independent manner, whereas cell ferroptosis-conditioned medium significantly triggered inflammation of microglia and PMs. Different type of microglia and macrophages showed varied sensitivity to RSL3-induced ferroptosis. Mechanistically, RSL3 induced Nrf2 protein expression to inhibit RNA Polymerase II recruitment to transcription start site of proinflammatory cytokine genes to repress cytokine transcription, and protect cells from ferroptosis. Furthermore, simultaneously injection of RSL3 and Fer-1 ameliorated LPS-induced neuroinflammation in in vivo conditions. CONCLUSIONS: These data revealed the proinflammatory role of ferroptosis in microglia and macrophages, identified RSL3 as a novel inhibitor of LPS-induced inflammation, and uncovered the molecular regulation of microglia and macrophage sensitivity to ferroptosis. Thus, targeting ferroptosis in diseases by using RSL3 should consider both the pro-ferroptosis effect and the anti-inflammation effect to achieve optimal outcome.


Assuntos
Carbolinas/farmacologia , Ferroptose/fisiologia , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/biossíntese , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Ferroptose/efeitos dos fármacos , Expressão Gênica , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...